120=15c^2-5

Simple and best practice solution for 120=15c^2-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120=15c^2-5 equation:



120=15c^2-5
We move all terms to the left:
120-(15c^2-5)=0
We get rid of parentheses
-15c^2+5+120=0
We add all the numbers together, and all the variables
-15c^2+125=0
a = -15; b = 0; c = +125;
Δ = b2-4ac
Δ = 02-4·(-15)·125
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{3}}{2*-15}=\frac{0-50\sqrt{3}}{-30} =-\frac{50\sqrt{3}}{-30} =-\frac{5\sqrt{3}}{-3} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{3}}{2*-15}=\frac{0+50\sqrt{3}}{-30} =\frac{50\sqrt{3}}{-30} =\frac{5\sqrt{3}}{-3} $

See similar equations:

| 42=18-v | | 2-20.4=x+1.6 | | 01.x-0.1(6-x)=0.7 | | 14=-92+p | | 4250=55b+105 | | 62(x+6)=3x+4 | | b-3.75=10 | | 135+(3x+15)=180 | | 1/7e=7 | | 3.2e+5=1 | | 2/3x+19=11 | | 15-½x=21 | | 8x-2(4-x)=16 | | -8=2x+20 | | 6x=46=X | | 135+(3x-15)=180 | | 23x+19=11 | | x-4=(-3) | | (7x+8)+(3x+20)=x+12 | | -5(x-6)=23 | | 150+(3x+15)=180 | | 6−2x=14 | | 7x−15=−50 | | -2g-9=13 | | 3c+1=c+1* | | 150.4=-47g | | (3x-4)(2x+17)=180 | | 1/9(3y-6)=-1/3(4-2y | | 9+w/5=15 | | 48-7y=8 | | (7x+3)=(3x+15)+(2x+18) | | 3n+46=-1+8n |

Equations solver categories